Estimate yield-at-age using the Beverton-Holt Yield-per-Recruit (YPR) model for a single year-class. This main function accepts a minimum length limit for harvest (minLL), a vector for conditional fishing mortality (cf), a vector of conditional natural mortality (cm), a vector of recruitment abundance (rec), and life history parameters (lhparams).
Arguments
- minLL
A single numeric representing the minimum length limit for harvest in mm.
- cf
A matrix of conditional fishing mortality where each row represents a year and each column represents age. Ages are age-0 through maximum age.
- cm
A matrix of conditional natural mortality where each row represents a year and each column represents age. Ages are age-0 through maximum age.
- rec
A single numeric representing number of recruits.
- lhparms
A named vector or list that contains values for each
N0,tmax,Linf,K,t0,LWalpha, andLWbeta. SeemakeLHfor definitions of these life history parameters. Also see details.- matchRicker
A logical that indicates whether the yield function should match that in Ricker (). Defaults to
TRUE. The only reason to changed toFALSEis to try to match output from FAMS. See the "YPR_FAMSvRICKER" article.
Value
A data.frame with the following calculated values:
ageis the age of the year classlengthis the mean length at age calculated using the von Bertalanffy growth model and provided parametersweightis the mean weight at age calculated using the log10 length-weight regression using the provided parametersN_startis the number of individuals at age at the start of the year.exploitationis the exploitation rate.expect_nat_deathis the expectation of natural death.cfis the conditional fishing mortality at age.cmis the conditional natural mortality at ageFis the instantaneous rate of fishing mortality.Mis the instantaneous rate of natural mortality.Zis the instantaneous rate of total mortality.Sis the (total) annual rate of survivaltris the time for a fish to recruit to a minimum length limit (i.e., time to enter fishery).Ntis the number of fish at time tr (time they become harvestable size).biomassis the total biomass at age (g)N_harvestis the total number harvested at ageN_dieis the total number that die at ageyieldis the estimated yield (in g).
For convenience the data.frame also contains the model input values (minLL, N0, N0, Linf, K, t0, LWalpha, LWbeta, and tmax).
The data.frame also contains a notes value which may contain abbreviations for "issues" that occurred when computing the results and were adjusted for. The possible abbreviates are as follows:
minLL>=Linf: The minimum length limit (minLL) being explored was greater than the given asymptotic mean length (Linf). For the purpose (only) of computing the time at recruitment to the fishery (tr) the Linf was set to minLL+0.1.tr<t0: The age at recruitment to the fishery (tr) was less than the hypothetical time when the mean length is zero (t0). The fish can't recruit to the fishery prior to having length 0 so tr was set to t0. This also assures that the time it takes to recruit to the fishery is greater than 0.Y=Infinite: The calculated yield (Y) was inifinity, which is impossible and suggests some other propblem. Yield was set to NA.Y<0: The calculated yield (Y) was negative, which is impossible. Yield was set to 0.Nharv<0: The calculated number of fish harvested (Nharv) was negative, which is not possible. Number harvested was set to 0.Ndie<0: The calculated number of fish recruiting to the fishery that died naturally (Ndie) was negative, which is not possible. Number that died was set to 0.agvglen<minLL: The average length of harvested fish was less than the given minimum length limit being explored, which is not possible (with only legal harvest). The average length was set to the minimum length limit.
References
Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Technical Report Bulletin 191, Bulletin of the Fisheries Research Board of Canada. Was (is?) from https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/1485.pdf.
Slipke, J.W., and M.J. Maceina. 2014. Fishery analysis and modeling simulator. v1.64. American Fisheries Society, Bethesda, MD.
See also
yprBH_func for simulating yield using the dynamic pool model.
See this demonstration page for more plotting examples
Author
Jason C. Doll, jason.doll@fmarion.edu
Examples
lhparms <- makeLH(N0=100,tmax=30,Linf=1349.5,K=0.111,t0=0.065,LWalpha=-5.2147,LWbeta=3.153)
# simulate yield from a single year-class
cm <- rep(0.18,(lhparms$tmax+1))
cf <- c(rep(0,3), rep(0.33,(lhparms$tmax+1) - 3))
Res_1 <- dpmBH_func(minLL=400,cm=cm,cf=cf,rec=1000,lhparms=lhparms,matchRicker=FALSE)
Res_1
#> age length weight nstart exploitation expect_nat_death cf
#> 1 0 0.0000 0.00000 1.000000e+03 0.0000000 0.1800000 0.00
#> 2 1 133.0349 30.35037 8.200000e+02 0.0000000 0.1800000 0.00
#> 3 2 260.8383 253.58225 6.724000e+02 0.0000000 0.1800000 0.00
#> 4 3 375.2145 798.00101 5.513680e+02 0.3012967 0.1493033 0.33
#> 5 4 477.5741 1707.32249 3.324355e+02 0.3012967 0.1493033 0.33
#> 6 5 569.1797 2968.94019 1.826400e+02 0.3012967 0.1493033 0.33
#> 7 6 651.1612 4537.95096 1.003424e+02 0.3012967 0.1493033 0.33
#> 8 7 724.5295 6354.14055 5.512814e+01 0.3012967 0.1493033 0.33
#> 9 8 790.1897 8353.08648 3.028740e+01 0.3012967 0.1493033 0.33
#> 10 9 848.9515 10472.91968 1.663990e+01 0.3012967 0.1493033 0.33
#> 11 10 901.5398 12658.06651 9.141959e+00 0.3012967 0.1493033 0.33
#> 12 11 948.6030 14860.98066 5.022592e+00 0.3012967 0.1493033 0.33
#> 13 12 990.7218 17042.59566 2.759412e+00 0.3012967 0.1493033 0.33
#> 14 13 1028.4155 19172.00767 1.516021e+00 0.3012967 0.1493033 0.33
#> 15 14 1062.1490 21225.73407 8.329020e-01 0.3012967 0.1493033 0.33
#> 16 15 1092.3385 23186.77433 4.575963e-01 0.3012967 0.1493033 0.33
#> 17 16 1119.3562 25043.61681 2.514034e-01 0.3012967 0.1493033 0.33
#> 18 17 1143.5354 26789.27749 1.381210e-01 0.3012967 0.1493033 0.33
#> 19 18 1165.1743 28420.41856 7.588370e-02 0.3012967 0.1493033 0.33
#> 20 19 1184.5398 29936.56947 4.169051e-02 0.3012967 0.1493033 0.33
#> 21 20 1201.8707 31339.45745 2.290476e-02 0.3012967 0.1493033 0.33
#> 22 21 1217.3808 32632.44444 1.258388e-02 0.3012967 0.1493033 0.33
#> 23 22 1231.2614 33820.06270 6.913582e-03 0.3012967 0.1493033 0.33
#> 24 23 1243.6837 34907.63808 3.798322e-03 0.3012967 0.1493033 0.33
#> 25 24 1254.8009 35900.98951 2.086798e-03 0.3012967 0.1493033 0.33
#> 26 25 1264.7501 36806.19325 1.146487e-03 0.3012967 0.1493033 0.33
#> 27 26 1273.6540 37629.40137 6.298799e-04 0.3012967 0.1493033 0.33
#> 28 27 1281.6225 38376.70479 3.460560e-04 0.3012967 0.1493033 0.33
#> 29 28 1288.7538 39054.03278 1.901232e-04 0.3012967 0.1493033 0.33
#> 30 29 1295.1359 39667.08149 1.044537e-04 0.3012967 0.1493033 0.33
#> 31 30 1300.8474 40221.26576 5.738685e-05 0.3012967 0.1493033 0.33
#> cm F M Z S biomass nharvest
#> 1 0.18 0.0000000 0.1984509 0.1984509 0.8200 0.000000e+00 0.000000e+00
#> 2 0.18 0.0000000 0.1984509 0.1984509 0.8200 2.488730e+04 0.000000e+00
#> 3 0.18 0.0000000 0.1984509 0.1984509 0.8200 1.705087e+05 0.000000e+00
#> 4 0.18 0.4004776 0.1984509 0.5989285 0.5494 4.399922e+05 1.297908e+02
#> 5 0.18 0.4004776 0.1984509 0.5989285 0.5494 5.675745e+05 1.001617e+02
#> 6 0.18 0.4004776 0.1984509 0.5989285 0.5494 5.422474e+05 5.502884e+01
#> 7 0.18 0.4004776 0.1984509 0.5989285 0.5494 4.553491e+05 3.023285e+01
#> 8 0.18 0.4004776 0.1984509 0.5989285 0.5494 3.502919e+05 1.660993e+01
#> 9 0.18 0.4004776 0.1984509 0.5989285 0.5494 2.529933e+05 9.125493e+00
#> 10 0.18 0.4004776 0.1984509 0.5989285 0.5494 1.742683e+05 5.013546e+00
#> 11 0.18 0.4004776 0.1984509 0.5989285 0.5494 1.157195e+05 2.754442e+00
#> 12 0.18 0.4004776 0.1984509 0.5989285 0.5494 7.464065e+04 1.513291e+00
#> 13 0.18 0.4004776 0.1984509 0.5989285 0.5494 4.702755e+04 8.314018e-01
#> 14 0.18 0.4004776 0.1984509 0.5989285 0.5494 2.906517e+04 4.567722e-01
#> 15 0.18 0.4004776 0.1984509 0.5989285 0.5494 1.767896e+04 2.509506e-01
#> 16 0.18 0.4004776 0.1984509 0.5989285 0.5494 1.061018e+04 1.378723e-01
#> 17 0.18 0.4004776 0.1984509 0.5989285 0.5494 6.296051e+03 7.574703e-02
#> 18 0.18 0.4004776 0.1984509 0.5989285 0.5494 3.700163e+03 4.161542e-02
#> 19 0.18 0.4004776 0.1984509 0.5989285 0.5494 2.156647e+03 2.286351e-02
#> 20 0.18 0.4004776 0.1984509 0.5989285 0.5494 1.248071e+03 1.256121e-02
#> 21 0.18 0.4004776 0.1984509 0.5989285 0.5494 7.178229e+02 6.901130e-03
#> 22 0.18 0.4004776 0.1984509 0.5989285 0.5494 4.106427e+02 3.791481e-03
#> 23 0.18 0.4004776 0.1984509 0.5989285 0.5494 2.338178e+02 2.083040e-03
#> 24 0.18 0.4004776 0.1984509 0.5989285 0.5494 1.325905e+02 1.144422e-03
#> 25 0.18 0.4004776 0.1984509 0.5989285 0.5494 7.491812e+01 6.287454e-04
#> 26 0.18 0.4004776 0.1984509 0.5989285 0.5494 4.219782e+01 3.454327e-04
#> 27 0.18 0.4004776 0.1984509 0.5989285 0.5494 2.370200e+01 1.897807e-04
#> 28 0.18 0.4004776 0.1984509 0.5989285 0.5494 1.328049e+01 1.042655e-04
#> 29 0.18 0.4004776 0.1984509 0.5989285 0.5494 7.425077e+00 5.728349e-05
#> 30 0.18 0.4004776 0.1984509 0.5989285 0.5494 4.143372e+00 3.147155e-05
#> 31 0.18 0.4004776 0.1984509 0.5989285 0.5494 2.308172e+00 1.729047e-05
#> ndie yield minLL N0 Linf K t0 LWalpha LWbeta tmax
#> 1 1.800000e+02 0.000000e+00 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 2 1.476000e+02 0.000000e+00 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 3 1.210320e+02 0.000000e+00 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 4 8.914171e+01 1.682142e+05 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 5 4.963371e+01 2.251468e+05 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 6 2.726876e+01 2.009899e+05 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 7 1.498146e+01 1.613851e+05 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 8 8.230812e+00 1.202871e+05 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 9 4.522008e+00 8.486876e+04 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 10 2.484391e+00 5.742378e+04 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 11 1.364925e+00 3.759943e+04 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 12 7.498895e-01 2.398064e+04 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 13 4.119893e-01 1.497108e+04 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 14 2.263469e-01 9.182960e+03 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 15 1.243550e-01 5.550320e+03 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 16 6.832064e-02 3.313353e+03 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 17 3.753536e-02 1.957245e+03 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 18 2.062193e-02 1.145817e+03 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 19 1.132969e-02 6.656198e+02 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 20 6.224530e-03 3.840927e+02 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 21 3.419757e-03 2.203582e+02 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 22 1.878814e-03 1.257856e+02 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 23 1.032221e-03 7.148564e+01 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 24 5.671020e-04 4.046972e+01 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 25 3.115658e-04 2.283335e+01 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 26 1.711743e-04 1.284440e+01 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 27 9.404314e-05 7.206358e+00 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 28 5.166730e-05 4.033755e+00 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 29 2.838601e-05 2.253260e+00 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 30 1.559528e-05 1.256386e+00 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> 31 8.568045e-06 6.994151e-01 400 1000 1349.5 0.111 0.065 -5.2147 3.153 30
#> notes
#> 1
#> 2
#> 3
#> 4
#> 5
#> 6
#> 7
#> 8
#> 9
#> 10
#> 11
#> 12
#> 13
#> 14
#> 15
#> 16
#> 17
#> 18
#> 19
#> 20
#> 21
#> 22
#> 23
#> 24
#> 25
#> 26
#> 27
#> 28
#> 29
#> 30
#> 31