Skip to contents

Ages, lengths, and maturity for female Yelloweye Rockfish (Sebastes rubberimus) from Oregon.

Format

A data frame with 159 observations on the following 5 variables.

date

Date fish was collected

length

Total length (cm)

age

Otolith age

maturity

Maturity state (Immature or Mature)

stage

Stage of maturity (1:Immature, 2:Maturing, 3:Mature, 4:Fertilized, 5:Ripe, 6:Spent, 7:Resting)

Source

Obtained directly (from Bob Hannah). Data were used in Hannah, R.W, M.T.O. Blume, and J.E. Thompson. 2009. Length and age at maturity of female yelloweye rockfish (Sebastes rubberimus) and cabezon (Scorpaenichthys marmoratus) from Oregon waters based on histological evaluation of maturity. Oregon Department of Fish and Wildlife, Information Reports 2009-04. [Was (is?) from http://www.dfw.state.or.us/mrp/publications/docs/Info200904_YlwEyeRF_Maturity.pdf] CSV file

Topic(s)

  • Growth

  • Maturity

  • von Bertalanffy

Examples

data(YERockfish)
str(YERockfish)
#> 'data.frame':	158 obs. of  5 variables:
#>  $ date    : Factor w/ 71 levels "10/1/2003","10/2/2003",..: 66 9 38 25 60 6 37 48 34 39 ...
#>  $ length  : int  31 32 32 32 32 33 33 34 34 34 ...
#>  $ age     : int  10 6 11 11 13 9 10 8 10 11 ...
#>  $ maturity: Factor w/ 2 levels "Immature","Mature": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ stage   : Factor w/ 9 levels "1","2","3","4",..: 1 1 1 2 2 1 1 1 1 1 ...
head(YERockfish)
#>        date length age maturity stage
#> 1  9/2/2003     31  10 Immature     1
#> 2 10/7/2002     32   6 Immature     1
#> 3 7/18/2000     32  11 Immature     1
#> 4 6/11/2001     32  11 Immature     2
#> 5  8/8/2000     32  13 Immature     2
#> 6 10/4/2003     33   9 Immature     1
op <- par(mfrow=c(2,2),pch=19)
plot(length~age,data=YERockfish,ylab="Total Length (cm)",xlab="Age")
hist(YERockfish$length,xlab="Total Length (cm)",main="")
tbl1 <- with(YERockfish,table(age,maturity))
(ptbl1 <- prop.table(tbl1,margin=1))
#>     maturity
#> age    Immature     Mature
#>   6  1.00000000 0.00000000
#>   8  1.00000000 0.00000000
#>   9  0.50000000 0.50000000
#>   10 0.66666667 0.33333333
#>   11 0.66666667 0.33333333
#>   12 0.57142857 0.42857143
#>   13 0.28571429 0.71428571
#>   14 0.23076923 0.76923077
#>   15 0.11111111 0.88888889
#>   16 0.10000000 0.90000000
#>   17 0.00000000 1.00000000
#>   18 0.09090909 0.90909091
#>   19 0.00000000 1.00000000
#>   20 0.00000000 1.00000000
#>   21 0.00000000 1.00000000
#>   22 0.00000000 1.00000000
#>   23 0.00000000 1.00000000
#>   25 0.00000000 1.00000000
#>   26 0.00000000 1.00000000
#>   27 0.00000000 1.00000000
#>   28 0.00000000 1.00000000
#>   29 0.00000000 1.00000000
#>   30 0.00000000 1.00000000
#>   31 0.00000000 1.00000000
#>   32 0.00000000 1.00000000
#>   33 0.00000000 1.00000000
#>   39 0.00000000 1.00000000
#>   42 0.00000000 1.00000000
#>   44 0.00000000 1.00000000
#>   50 0.00000000 1.00000000
#>   54 0.00000000 1.00000000
#>   61 0.00000000 1.00000000
#>   66 0.00000000 1.00000000
#>   70 0.00000000 1.00000000
#>   88 0.00000000 1.00000000
#>   89 0.00000000 1.00000000
#>   94 0.00000000 1.00000000
plot(ptbl1[,2]~as.numeric(row.names(ptbl1)),type="l",xlab="Age",ylab="Proportion Mature")
tbl2 <- with(YERockfish,table(length,maturity))
(ptbl2 <- prop.table(tbl2,margin=1))
#>       maturity
#> length  Immature    Mature
#>     31 1.0000000 0.0000000
#>     32 1.0000000 0.0000000
#>     33 1.0000000 0.0000000
#>     34 1.0000000 0.0000000
#>     35 1.0000000 0.0000000
#>     36 0.5000000 0.5000000
#>     37 0.6000000 0.4000000
#>     38 0.7500000 0.2500000
#>     39 0.5000000 0.5000000
#>     40 0.6000000 0.4000000
#>     41 0.1428571 0.8571429
#>     42 0.1428571 0.8571429
#>     43 0.0000000 1.0000000
#>     44 0.1250000 0.8750000
#>     45 0.0000000 1.0000000
#>     46 0.0000000 1.0000000
#>     47 0.1111111 0.8888889
#>     48 0.0000000 1.0000000
#>     49 0.1428571 0.8571429
#>     50 0.0000000 1.0000000
#>     51 0.0000000 1.0000000
#>     52 0.0000000 1.0000000
#>     53 0.0000000 1.0000000
#>     54 0.0000000 1.0000000
#>     56 0.0000000 1.0000000
#>     57 0.0000000 1.0000000
#>     58 0.0000000 1.0000000
#>     60 0.0000000 1.0000000
#>     61 0.0000000 1.0000000
#>     62 0.0000000 1.0000000
#>     64 0.0000000 1.0000000
#>     65 0.0000000 1.0000000
#>     67 0.0000000 1.0000000
#>     68 0.0000000 1.0000000
#>     70 0.0000000 1.0000000
plot(ptbl2[,2]~as.numeric(row.names(ptbl2)),type="l",xlab="Age",ylab="Proportion Mature")

par(op)