Skip to contents

Back-calculated lengths-at-age for Walleye (Sander vitreus) from Lake Mille Lacs. Walleye were captured by Minnesota Department of Natural Resources personnel in fishery-independent gillnets (five multifilament nylon mesh panels with each panel measuring 15.2 m wide and 1.8 m high; bar-measure mesh sizes of the panels were 19.1, 25.4, 31.7, 38.1, and 50.8 mm) set in the fall (mid September to early October) from 2000 to 2011.

Format

A data frame of 14583 observations on the following 9 variables:

ID

A unique fish identification number.

Year

Year of data.

Sex

Sex (female, male).

Est.Age

Estimated (from otoliths) age (yrs) at capture.

TL

Total length (mm).

Scale.Rad

Total scale radius (mm) at capture.

Dist.Ann

Scale radius (mm) to annulus given in BC.Age.

BC.Age

Annulus or previous age.

BC.Len

Back-calculated length at BC.Age. Lengths were back-calculated using the Scale-Proportional Hypothesis method.

Source

These unpublished data are from the Minnesota Department of Natural Resources, Section of Fisheries (via Melissa Treml). Do not use for other than educational purposes without permission from the source. CSV file

Topic(s)

  • Growth

  • von Bertalanffy

  • Back-calculation

Examples

data(WalleyeML)
str(WalleyeML)
#> 'data.frame':	14583 obs. of  9 variables:
#>  $ ID       : Factor w/ 3146 levels "2000.10001.F",..: 1 1 1 1 2 2 3 3 3 3 ...
#>  $ Year     : int  2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 ...
#>  $ Sex      : Factor w/ 2 levels "F","M": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ Est.Age  : int  4 4 4 4 2 2 9 9 9 9 ...
#>  $ TL       : num  452 452 452 452 343 ...
#>  $ Scale.Rad: num  5.2 5.2 5.2 5.2 3.2 3.2 6.4 6.4 6.4 6.4 ...
#>  $ Dist.Ann : num  1.2 2.4 3.7 4.5 1.3 2.4 1.5 2.5 3.5 4.5 ...
#>  $ BC.Age   : int  1 2 3 4 1 2 1 2 3 4 ...
#>  $ BC.Len   : num  99.4 205.2 319.8 390.4 135.5 ...
head(WalleyeML)
#>             ID Year Sex Est.Age    TL Scale.Rad Dist.Ann BC.Age BC.Len
#> 1 2000.10001.F 2000   F       4 452.1       5.2      1.2      1  99.36
#> 2 2000.10001.F 2000   F       4 452.1       5.2      2.4      2 205.18
#> 3 2000.10001.F 2000   F       4 452.1       5.2      3.7      3 319.82
#> 4 2000.10001.F 2000   F       4 452.1       5.2      4.5      4 390.37
#> 5 2000.10002.F 2000   F       2 342.9       3.2      1.3      1 135.47
#> 6 2000.10002.F 2000   F       2 342.9       3.2      2.4      2 255.56
xtabs(~Year+Est.Age+Sex,data=WalleyeML)
#> , , Sex = F
#> 
#>       Est.Age
#> Year     1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  19
#>   2000  45  96  63 132 165 114 189 176 189  30  44 180  26   0   0   0   0   0
#>   2001  23  64  66  28  95 138 112  96  99 140  22  24 195   0   0   0  17  19
#>   2002  14  30 150 132  90 198 385 272 297 300   0   0   0   0   0   0   0   0
#>   2003  15  22  21  60  75  66 105 120   0   0   0   0   0   0   0   0   0   0
#>   2004  15  40  36  32  75 120 112 120   0   0   0   0   0   0   0   0   0   0
#>   2005  20  40  60  24  45  90 105 120   0   0   0   0   0   0   0   0   0   0
#>   2006  15  30  42  64  20   6 105 120   0   0   0   0   0   0   0   0   0   0
#>   2007  14  38  21  60  80  18   0 104   0   0   0   0   0   0   0   0   0   0
#>   2008  16  32  45  60  75  90   0   0   0   0   0   0   0   3   0   0   0   0
#>   2009  14  32  48  60  80  90 105  48   0   0   0   0   0   0   0   0   0   0
#>   2010  11  32  45  72  85  18   0   0   0   0   0   0   0   0   0   0   0   0
#>   2011  16  30  48  48  60  66  21  80   0   0   0   0   9   0   0   0   0   0
#> 
#> , , Sex = M
#> 
#>       Est.Age
#> Year     1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  19
#>   2000  58  80  63  88 105  54 182 192 171  20  66 204  39   0  15  48   0   0
#>   2001  29  60  72  24  95  90  91  88  81 140  33  24 130   0   0   0  34  19
#>   2002   5  20 171  88  55 102 224 136 252 220   0   0   0   0   0   0   0   0
#>   2003  15  22  36  60  65 102  56 120   0   0   0   0   0   0   0   0   0   0
#>   2004  15  40  36  24  75  36  70  32   0   0   0   0   0   0   0   0   0   0
#>   2005  20  40  60   8   5  78  35  32   0   0   0   0   0   0   0   0   0   0
#>   2006  15  30  48  56  20  12  77  40   0   0   0   0   0   0   0   0   0   0
#>   2007  16  34  36  60  80   6   0   8   0   0   0   0   0   0   0   0   0   0
#>   2008  15  30  42  32  80  90   0   0   0   0   0   0   0   0   0   0   0   0
#>   2009  15  30  42  64  15  90 105  16   0   0   0   0   0   0   0   0   0   0
#>   2010  13  30  45  60  50   6   0   0   0   0   0   0   0   0   0   0   0   0
#>   2011  13  28  45  44  55  24   7  40   0   0   0   0   0   0   0   0   0   0
#>